Dengue Data Hub
  • About
  • denguedatahub Installation
  • All Countries
  • Sri Lanka
  • USA
  • Singapore
  • China
  • Other Countries
  • Web Scraping Functions
  • Data Manipulation Functions
  • Interactive Data Explorer
  • Collaborate with us

Tutorials

Spatio-temporal Visualization of Dengue Incidence

library(denguedatahub)
library(lubridate)
library(ggplot2)
library(viridis)
library(ceylon)
library(sf)
library(magrittr)
library(dplyr)
library(tsibble)

srilanka_weekly_data$month <- month(srilanka_weekly_data$start.date)
srilanka_weekly_data$year <- year(srilanka_weekly_data$start.date)

srilanka_weekly_data$district <- toupper(srilanka_weekly_data$district)

district <- district %>% 
  # use District names from slwer data
  mutate(district = case_when(
          DISTRICT ==  "NUWARA ELIYA" ~ "NUWARAELIYA" ,
          DISTRICT == "HAMBANTOTA" ~ "HAMBANTHOTA",
          TRUE ~ DISTRICT))

all <-  dplyr::left_join(district, srilanka_weekly_data,
                   by = "district")

all <- all %>% group_by(year, district) %>%
  dplyr::summarize(total = sum(cases)) %>% ungroup() 
all$year <- as.integer(all$year)
ggplot(all2021) + 
  geom_sf(aes(fill = total), show.legend = TRUE) + 
  scale_fill_viridis() +
  facet_wrap(vars(year), ncol=5) +
  ggtitle("2021")